

4O9T

Technical specification

Studer Modbus RTU Protocol for

Xcom-485i

Date : 02.03.2022

Version : V1.1.3

V.1.1.3 2 / 25

CONTENTS

1 Introduction .. 3
1.1 Conventions used in this document ... 3

1.2 List of acronyms ... 3

2 Modbus rtu implementation ... 4
2.1 Protocol overview ... 4

2.2 Default configuration ... 4

2.3 Baud rate selection .. 5

3 Modbus RTU For Xtender System .. 6
3.1 Addressing Studer devices .. 6

3.2 Multicast accesses .. 7

3.3 Unicast Accesses .. 8

3.4 Response delay ... 8

4 Studer Innotec Modbus Function code ... 9

5 Reading messages .. 9

6 GaTeway registers ... 12
6.1 Read number of studer devices ... 12

6.2 Read gateway identiy card .. 13

7 System ... 15
7.1 Read system time ... 15

7.2 Write system time .. 16

8 User infos : Read Input Registers ... 18
8.1 Read User Info Example ... 18

9 Read Parameters : Read Holding Registers .. 19
9.1 Read parameter value from Flash example ... 19

9.2 Read the minimum possible value from Flash example .. 20

9.3 Read the maximum possible value from Flash example ... 21

10 Write Parameters : Write multiple Registers ... 22
10.1 Write in Flash example ... 22

10.2 Write in RAM only example .. 23

10.3 Change value of parameters on the Xtender inverter .. 24

10.4 Cyclic write of parameters .. 24

10.5 Data encoding ... 24
10.5.1 “ENUM” format encoded as a float ... 25
10.5.2 “BOOL” format encoded as a float ... 25
10.5.3 “SIGNAL” format encoded as a float .. 25
10.5.4 “HOUR” format encoded as a float ... 25
10.5.5 “DAYS of WEEK” format encoded as a float ... 25

V.1.1.3 3 / 25

1 INTRODUCTION

This technical specification describes the "Studer Modbus RTU Protocol" for the Xcom-485i

communication module (Refer to Xcom-485i User manual). This protocol enables the control of

a Studer system from a third party device (PLC, SCADA, etc.) using a RS-485 based

communication interface. Using this protocol, it is possible to:

• Read user info

• Read parameters

• Write parameters

• Read pending messages

1.1 CONVENTIONS USED IN THIS DOCUMENT

Numbers starting with a "0x" prefix are hexadecimal numbers, otherwise, there are decimal

numbers.

1.2 LIST OF ACRONYMS

RCC The Studer Innotec remote control used to configure the Xtender system.

PDU Protocol Data Unit (see Modbus specification for more information)

V.1.1.3 4 / 25

2 MODBUS RTU IMPLEMENTATION

The Xcom-485i device offers a way for installers/integrators/developers to access and control

an Xtender system using the Modbus RTU protocol. The Modbus protocol is standard and well

known and used in the industry field. For more information regarding Modbus, please see the

Modbus official web page: www.modbus.org.

2.1 PROTOCOL OVERVIEW

The Modbus application protocol defines the Modbus Protocol Data Unit (PDU) which is

independent on the communication layer. This PDU has the following format:

MODBUS PDU

Function Code Data

On RS-485, the standard Modbus PDU is encapsulated and fields are added in order to make

communication possible over a serial line.

 MODBUS PDU

Slave Address Function Code Data CRC

MODBUS Serial Line PDU

The Slave Address field (8 bits) is used by the Modbus Master to access a slave device on the

bus. The CRC field (16 bits – CRC16 Modbus as described into the 6.2.2 chapter of

Modbus_over_serial_line_v1_02.pdf document) with the low byte first and high byte second is

used to check if the frame transmission is done successfully. For more information regarding

Modbus and related documents, please see the Modbus official web page: www.modbus.org.

2.2 DEFAULT CONFIGURATION

By default, the Xcom-485i has the following Modbus configuration

Modbus Value Remarks

Addressing 1 to 63

33 to 95

65 to 127

129 to 192

Configurable by dip switches, see

chapter 3.1 for more information.

Baud Rate 9’600 bps

19’200 bps

38’400 bps

115’200 bps

Configurable by dip switches, see

chapter 2.3 for more information.

Parity Even

Protocol Modbus RTU only

Byte transmission 1 start bit

8 data bits, LSB first

1 parity bit (Even)

1 stop bit

Electrical Interface RS-485 on 2 wires

Connector type RJ-45

http://www.modbus.org/

V.1.1.3 5 / 25

Frames endianness are defined by the Modbus standard and are big endian, so MSB (Most

Significant Byte) is sent first on the medium. For example, a 16 bits value of 0x1234 will be send

0x12 then 0x34 on the medium.

2.3 BAUD RATE SELECTION

As explained above, the RS-485 baud rate can be selected using the dip switches 7 and 8 of

the Xcom-485i. The following tables shows how to select it.

Position
Baud rate

7 8

OFF

OFF 9’600 bps

ON 19’200 bps

ON

OFF 38’400 bps

ON 115’200 bps

V.1.1.3 6 / 25

3 MODBUS RTU FOR XTENDER SYSTEM

The Xcom-485i Studer Modbus RTU Protocol offers the following functionalities in the “Xtender

World”:

• Read parameters from Flash (value, min possible value, max possible value)

• Write parameters in Flash (and RAM)

• Write parameters in RAM only

• Read User Infos

• Read messages

Also, it is possible to access multiple devices of the same kind (e.g. multicast access on all

Xtender devices) or to access a single device (e.g. unicat access to Xtender 1).

The Slave Address field is used by the Xcom-485i gateway to access Studer Innotec devices.

Please see chapter 3.1 for more information.

3.1 ADDRESSING STUDER DEVICES

As the Xtender system can be made of multiple devices, we decided to implement the

addressing of the Studer devices using the Modbus slave address encoded on 8 bits. So, the

Xcom-485i will do the gateway and will respond to a certain address range. This address range

can be mapped using the dip switches of the Xcom-485i device. So, an offset can be

programmed with dip switches 1 and 2. The following figure shows how the Slave address are

distributed in an Xtender system with dipswitches 1 and 2 set to off.

V.1.1.3 7 / 25

The following tables shows the Address range and the corresponding Studer devices.

Address

Offset
Devices Remarks

1 Xcom-485i Modbus gateway

The gateway itself for

configuration and

status

2 System
The system

information

3 to 6 Reserved

7 to 9 Virtual address to access all XTH, XTM and XTS

present on the same phase

7 for L1

8 for L2

9 for L3

See section “multicast

accesses”

10 Virtual address to access all XTH, XTM and XTS See section “multicast

accesses”

11 to 19 A single XTH, XTM or XTS inverter/charger Ordered by the index

displayed on the RCC

20 Virtual address to access all VarioTrack See section “multicast

accesses”

21 to 35 A single VarioTrack Ordered by the index

displayed on the RCC

36 to 39 Reserved

40 Virtual address to access all VarioString See section “multicast

accesses”

41 to 55 A single VarioString Ordered by the index

displayed on the RCC

56 to 59 Reserved

60 Virtual address to access all BSP or Xcom-CAN BMS

(only one per installation)

See section “multicast

accesses”

61 A single BSP or Xcom-CAN BMS Only one BSP per

installation

62 to 63 Reserved

The following tables shows the Address offset that can be programmed using the dip switches

1 and 2.

Position Address

Offset

Address

range 1 2

OFF

OFF 0
(0)

1 to 63

ON 32
(0)

33 to 95

ON

OFF 64
(0)

65 to 127

ON 128
(0)

129 to 192

3.2 MULTICAST ACCESSES

Multicast accesses enable the possibility to access a group of devices of the same kind. So, it

is possible to access all Xtenders (XTH, XTM, XTS or a mix), all VarioTracks or all VarioStrings. In

V.1.1.3 8 / 25

order to do it, you need to use Multicast address as described in the previous table. For reasons

of uniformity, the BSP can also be accessed with a multicast address.

A write parameter operation to a multicast address will have the effect to change the

parameter value on all devices of the same kind. A read parameter/user info operation will

return the value of the first device displayed in the RCC list in the group you are targetted.

As an exemple, if you write a parameter at address “10”, all Xtenders will have the

corresponding value changed according to your write operation. If you read a parameter or

a user information at address “10”, the system will return the value of the Xtender from address

“11”, which is the first Xtender.

Note that the same behavior is guaranteed with phase group accesses, a read

parameter/user info operation will return the value of the first Xtender on this phase and a write

parameter operation acts on all the Xtenders of the same phase (as defined physically by the

jumper on the PCB inside the Xtender).

As an example, if you write a parameter at address “7”, all Xtenders present on phase L1 will

have the corresponding value changed according to your write operation. If you read a

parameter or a user information at address “7”, the system will return the value of the first

Xtender present on phase L1.

3.3 UNICAST ACCESSES

Unicast accesses enable the possibility to access a single device in the installation. So any single

Xtender, VarioTrack or VarioString can be access using Unicast address.

As an exemple, assume that you have 3 Xtenders in your system. Imagine that you want to

access the second one displayed in the “System Info” of your RCC, you will need to use Unicast

address “12”.

3.4 RESPONSE DELAY

The response delay of the Xcom-485i could be up to 1 second. This is a good value for a timeout

in the master implementation.

The response delay depends on the internal Studer bus load (number of devices, number of

RCC, values displayed on the RCC, etc.). The use of the data logger on other RCCs could

cause a periodic increase of the response delay every 60 seconds as it needs to do more

transactions on the Studer CAN bus.

It is strongly recommended not to spam the Xcom-485i with multiple requests. The correct way

to communicate with the Xcom-485i is to send a request and to wait for the response before

sending the next request. If no response comes from Xcom-485i after a delay of 1 second, we

can consider that the timeout is over, and another request can be send. It is also how Modbus

RTU is intended to work.

V.1.1.3 9 / 25

4 STUDER INNOTEC MODBUS FUNCTION CODE

Studer Innotec parameters ,user information and messages are accessible using Modbus

Function code. The following table maps the Xtender system function to the Modbus Function

code.

Xtender System Functions Modbus Function Name Modbus Function Code

Read Parameter

More than 1 is possible

Read Holding Registers 3 / 0x03

Read User Info

More than 1 is possible

Read Input Registers 4 / 0x04

Write Parameter

More than 1 is possible

Write Multiple Registers 16 / 0x10

Read messages Read Input Registers 4 / 0x04

Modbus uses the same mechanism between the function code to access registers. The request

sent by the master contains always the Function Code, the Register Starting Address and the

Quantity of Registers to be access. Some more information can be mandatory inside the

request depending on the Function Code. Please see Modbus specifications for more

information.

Modbus Request PDU general structure :

Function Code 1 Byte 0x03 or 0x04 or 0x10

Register Starting Addres 2 Bytes 0x0000 to 0xFFFF

Quantity of Registers 2 Bytes 2 to n (minimum 2 for 32 bits float access)

Must be an even number (2, 4, 6, etc.)

… … …

Modbus registers are defined as 16 bits registers. These registers are accessible using a 16 bits

register address. For the Studer Innotec implementation, values are mostly encoded in 32 bits

float format. So it will be needed to read/write 2 consecutive 16 bits registers to perform the full

transaction (read/write parameter or read user info). Modbus register address have been

defined for every parameter and user info. Please see the “Technical specification - Modbus

appendix.pdf” available on our website to get the full list of Modbus register.

5 READING MESSAGES

Within the Xtender system, any device (Xtender, VarioTrack, VarioString, BSP, Xcom-CAN BMS)

can send messages. These messages are displayed on the RCC and also available on the

Studer Portal whenever the installation is connected to the Internet.

In case of a Modbus RTU implementation, there is no way for the slave to send messages

directly to the Modbus master. So, the master should read some registers in order to know if

some messages are pending. For this reason, there is a slave address to access the Xcom-485i

gateway itself. It is the gateway that will record all the pending messages and make it available

to the Modbus master. The Modbus master will just need to perform some Modbus Read Input

Registers to the right registers to get the messages.

At address 0x0000, there is a first register that contains the number of currently pending

messages. It should be read first using Modbus Read Input Registers with the “Quantity of Input

V.1.1.3 10 / 25

Registers” set to 1. It should be done like that, otherwise the Xcom-485i will send back an

exception. The following table shows the register map

Xcom-485i register

address

Register content Register size

0x0000 Number of pending messages 16 bits

unsigned

Modbus Request PDU :

Function Code 1 Byte 4

Register Starting Addres 2 Bytes 0x0000

Quantity of Registers 2 Bytes 1 (always 1, otherwise exception is returned)

Modbus Request on serial line :

To retrieve the numbers of pending messages, you will have to read the register 0x0000 on the

gateway that has the slave address n° 0x01, assuming that Address Offset is set to 0.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Start register address

2 bytes

Quantity of registers

2 bytes

0x01 0x04 0x0000 0x0001 0x31CA

Modbus Response PDU :

Function Code 1 Byte 4

Byte Count 1 Byte 2

Input Register 0 2 Bytes 12 (12 messages pending in this example)

Modbus Response on serial line :

In this example the following response will be present on the the serial line, as all registers are

16 bits length the byte count field will be 0x02. The register 0 contains 0x000C that means 12

messages are pending on the gateway.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Byte count

1 byte

Register 0

2 bytes

0x01 0x04 0x02 0x000C 0xB935

At address 0x0001, the oldest message can be accessed using Modbus Read Input Registers

with the “Quantity of Input Registers” set to 4. It should be done like that, otherwise the Xcom-

485i will send back an exception. The following table shows the registers map.

V.1.1.3 11 / 25

Xcom-485i register

address

Register content Register size

0x0001 Oldest message: Device Source 16 bits

unsigned

0x0002 Oldest message: Message Id 16 bits

unsigned

0x0003 Oldest message: Optional value Most significant word 16 bits

unsigned

0x0004 Oldest message: Optional value Least significant word 16 bits

unsigned

Modbus Request PDU :

Function Code 1 Byte 4

Register Starting Addres 2 Bytes 0x0001

Quantity of Registers 2 Bytes 4 (always 4, otherwise exception is returned)

Modbus Request on serial line :

As the precedent example response indicates 12 pending messages on the gateway, it is

necessary to perform 12 times the following request. Once a message is read, it is deleted inside

the Xcom-485i. The number of messages that can be stored inside the Xcom-485i is 128.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Start register address

2 bytes

Quantity of registers

2 bytes

0x01 0x04 0x0001 0x0004 0xA009

Modbus Response PDU :

Function Code 1 Byte 4

Byte Count 1 Bytes 8

Input Register 0 2 Bytes Device source

Input Register 1 2 Bytes Message Id

Input Register 2 2 Bytes Optional value Most significant word

Input Register 3 2 Bytes Optional value Least significant word

Modbus Response on serial line :

As a response, one of the 12 messages is encoded as shown below and indicates that a

warning happened due to a fan error detected, because the message id 0x0010 is message

n°16 on the RCC, please refer to appendix to a complete list of RCC messages.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Byte count

1 byte

Reg 0

2 bytes

Reg 1

2 bytes

Reg 2

2 bytes

Reg 3

2 bytes

0x01 0x04 0x08 0x000B 0x0010 0x0000 0x0000 0x5F0E

V.1.1.3 12 / 25

6 GATEWAY REGISTERS

The gateway itself stores read-only informations that may be useful to retreive as the number

of each Studer Innotec devices present on the proprietary bus as defined under 3.1 Addressing

Studer Devices and also identiy card of the gateway itself containing software version,

hardware version and the unique FID number.

6.1 READ NUMBER OF STUDER DEVICES

To read the number of Studer devices accessible the registers presented below must be read

accessing the gateway itself. Note that the read access to those specific registers must be

performed with a single request reading the 5 registers at once.

Xcom-485i register

address

Register content Register size

0x0005 Number of Xtender devices 16 bits

unsigned

0x0006 Number of VarioTrack devices 16 bits

unsigned

0x0007 Number of VarioString devices 16 bits

unsigned

0x0008 Number of BSP devices (also Xcom-CAN with BMS mode) 16 bits

unsigned

0x0009 Number of RCC and Gateways 16 bits

unsigned

Modbus Request PDU :

Function Code 1 Byte 4

Register Starting Addres 2 Bytes 0x0005

Quantity of Registers 2 Bytes 5 (always 5, otherwise exception is returned)

Modbus Request on serial line :

To retrieve the numbers Studer devices, you will have to read the register 0x0005 to 0x0009 on

the gateway that has the slave address n° 0x01, assuming that Address Offset is set to 0.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Start register address

2 bytes

Quantity of registers

2 bytes

0x01 0x04 0x0005 0x0005 0x2008

Modbus Response PDU :

Function Code 1 Byte 4

Byte Count 1 Byte 10

Input Register 5 2 Bytes 1 (1 Xtender present in this example)

Input Register 6 2 Bytes 1 (1 VarioTrack present in this example)

Input Register 7 2 Bytes 1 (1 VarioString present in this example)

Input Register 8 2 Bytes 1 (1 BSP present in this example)

Input Register 9 2 Bytes 2 (1 RCC + 1 Xcom-485i present in this example)

V.1.1.3 13 / 25

Modbus Response on serial line :

In this example the following response will be present on the the serial line, as all registers are

16 bits length the byte count field will be 0x0A.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Byte count

1 byte

Reg 5

2 bytes

Reg 6

2 bytes

Reg 7

2 bytes

Reg 8

2 bytes

Reg 9

2 bytes

0x01 0x04 0x0A 0x0001 0x0001 0x0001 0x0001 0x0002 0x21EC

6.2 READ GATEWAY IDENTIY CARD

To read the identity card of the gateway the registers presented below must be read accessing

the gateway itself. Note that the read access to those specific registers must be performed

with a single request reading the 5 registers at once.

Xcom-485i register

address

Register content Register size

0x000A Version Software MSB 16 bits

unsigned

0x000B Version Software LSB 16 bits

unsigned

0x000C Version Hardware 16 bits

unsigned

0x000D FID MSB 16 bits

unsigned

0x000E FID LSB 16 bits

unsigned

Modbus Request PDU :

Function Code 1 Byte 4

Register Starting Addres 2 Bytes 0x000A

Quantity of Registers 2 Bytes 5 (always 5, otherwise exception is returned)

Modbus Request on serial line :

To retrieve the identity card, you will have to read the register 0x000A to 0x000E on the gateway

that has the slave address n° 0x01, assuming that Address Offset is set to 0.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Start register address

2 bytes

Quantity of registers

2 bytes

0x01 0x04 0x000A 0x0005 0x100B

V.1.1.3 14 / 25

Modbus Response PDU :

Function Code 1 Byte 4

Byte Count 1 Byte 10

Input Register 10 2 Bytes 0x0100

Input Register 11 2 Bytes 0x0654

Input Register 12 2 Bytes 0x0100

Input Register 13 2 Bytes 0x4E72

Input Register 14 2 Bytes 0x0048

Modbus Response on serial line :

In this example the following response will be present on the the serial line, as all registers are

16 bits length the byte count field will be 0x0A. Note that the FID value shown as a response is

specific to one device only. See below to decode each of the register content.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Byte count

1 byte

Reg 10

2 bytes

Reg 11

2 bytes

Reg 12

2 bytes

Reg 13

2 bytes

Reg 14

2 bytes

0x01 0x04 0x0A 0x0100 0x0654 0x0100 0x4E72 0x0048 0xD543

Software version encoding

The software version is of the the form X.Y.Z. encoded in two 16 bits unsigned values :

8 bit (MSB) : X 8 bit : reserved 8 bit: Y 8 bit (LSB) : Z

Input Register 10 (Version Software MSB) Input Register 11 (Version Software LSB)

Following the example presented above the software version is 1.6.84 :

0x01 : X 0x00 : non-used 0x06 : Y 0x54 : Z

Input Register 10 (Version Software MSB) Input Register 11 (Version Software LSB)

Hardware version encoding

The software version is of the the form X.Y. encoded in one 16 bits unsigned values. Following

the example presented above the hardware version is 1.0 :

0x01 : X 0x00 : Y

Input Register 12 (Version Hardware)

FID encoding

The FID is a unique identifier for the gateway encoded a 32 bit unsigned value. The value is

formed by combining FID MSB and FID LSB.

16 bit (MSB) : X 16 bit (LSB) : Y

Input Register 13 (FID MSB) Input Register 14 (FID LSB)

Following the example presented above the FID is 0x4E720048.

V.1.1.3 15 / 25

7 SYSTEM

7.1 READ SYSTEM TIME

To read the system time, the following registers must be read using the system device address.

Note the read access could be performed register by register or with a single request reading

the 8 registers at once. Note that an exception is returned if the quantity of registers doesn’t

match the maximal number of registers (ex: register address 0x0004 with 8 registers to read).

Xcom-485i register

address

Register content Register size

0x0000 Sub-second in milliseconds (0 to 999) 16 bits

unsigned

0x0001 Second (0 to 59) 16 bits

unsigned

0x0002 Minute (0 to 59) 16 bits

unsigned

0x0003 Hour (0 to 23) 16 bits

unsigned

0x0004 Weekday (1=MONDAY, 7=SUNDAY) 16 bits

unsigned

0x0005 Day (0 to 31) 16 bits

unsigned

0x0006 Month (1 to 12) 16 bits

unsigned

0x0007 Year (22 for year 2022) 16 bits

unsigned

Modbus Request PDU :

Function Code 1 Byte 3

Register Starting Address 2 Bytes 0x0000 to 0x0007

Quantity of Registers 2 Bytes 1 to 8

Modbus Request on serial line :

To retrieve the actual system date, you will have to read the register 0x0005 to 0x0007,

respectively the day, month and year. The slave address is 0x02, assuming that Address Offset

is set to 0.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Start register address

2 bytes

Quantity of registers

2 bytes

0x02 0x03 0x0005 0x0003 0x15F9

Modbus Response PDU :

Function Code 1 Byte 3

Byte Count 1 Byte 0x06

Input Register 5 2 Bytes 0x0011

V.1.1.3 16 / 25

Input Register 6 2 Bytes 0x0002

Input Register 7 2 Bytes 0x0016

Modbus Response on serial line :

In this example the following response will be present on the the serial line, as all registers are

16 bits length the byte count field will be 0x06. The result corresponds to the date 17.02.2022.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Byte count

1 byte

Reg 5

2 bytes

Reg 6

2 bytes

Reg 7

2 bytes

0x02 0x03 0x06 0x0011 0x0002 0x0016 0xE988

7.2 WRITE SYSTEM TIME

Write the system time by sending all registers at the same time (impossible to write only one

register).

Modbus Request PDU :

Function Code 1 Byte 16

Register Starting Address 2 Bytes 0

Quantity of Registers 2 Bytes 8 (always 8, otherwise exception is returned)

Byte Count 1 Byte 16

Register value 0 2 Bytes 0x0000

Register value 1 2 Bytes 0x0000

Register value 2 2 Bytes 0x0000

Register value 3 2 Bytes 0x0000

Register value 4 2 Bytes 0x0004 (THURDAY)

Register value 5 2 Bytes 0x0011

Register value 6 2 Bytes 0x0002

Register value 7 2 Bytes 0x0016

Modbus Request on serial line :

In this example, the time is set to 00:00:00.000 and the date is set to Thursday 17.02.2022. It is

mandatory to send all registers at the same time in order to transmit the information to the

whole system through the StuCan2 bus. The request must be addressed to slave n°2 (0x02),

assuming that Address Offset is set to 0.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Start reg

addr

2 bytes

Qty of

reg

2 bytes

Byte

Count

1 byte

Reg 0

2 bytes

Reg 1

2 bytes

Reg 2

2 bytes

Reg 3

2 bytes

Reg 4

2 bytes

Reg 5

2 bytes

Reg 6

2 bytes

Reg 7

2 bytes

0x02 0x10 0x0000 0x0008 0x10 0x0000 0x0000 0x0000 0x0000 0x0004 0x0011 0x0002 0x0016 0xD4E5

V.1.1.3 17 / 25

Modbus Response PDU :

Function Code 1 Byte 16

Register Starting Addres 2 Bytes 0

Quantity of Registers 2 Bytes 8

A write operation responds with the quantity of written registers, that is always 8 in this case.

Modbus Response on serial line :

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Start register address

2 bytes

Quantity of registers

2 bytes

0x02 0x10 0x0000 0x0008 0xC1FC

V.1.1.3 18 / 25

8 USER INFOS : READ INPUT REGISTERS

The available user information is the same as the values that can be chosen to be displayed

on the RCC. This user information gives the current state of the system. The user information can

not be modified, and their values change during the operation of the system.

The corresponding Modbus function code to read User Infos is Modbus Read Input Registers.

The “Quantity of Registers” need to be set to 2, otherwise the Xcom-485i will send back an

exception.

8.1 READ USER INFO EXAMPLE

Read the battery temperature (info user 3001) on Xtender 1.

Modbus Request PDU :

Function Code 1 Byte 4

Register Starting Address 2 Bytes 2

Quantity of Registers 2 Bytes 2 (always 2, otherwise exception is returned)

Modbus Request on serial line :

The value of user info 3001 is stored in register 2 and 3 and in order to read this user info on

Xtender 1, the request must be addressed to slave n°11 (0x0B) , assuming that Address Offset is

set to 0.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Start register address

2 bytes

Quantity of registers

2 bytes

0x0B 0x04 0x0002 0x0002 0xD0A1

Modbus Response PDU :

Function Code 1 Byte 4

Byte Count 1 Bytes 4

Input Register 0 2 Bytes 0x41D3

Input Register 1 2 Bytes 0x3333

The battery temperature on Xtender 1 is 0x41D33333 => 26.4 °C

Modbus Response on serial line :

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Byte count

1 byte

Register 0

2 bytes

Register 1

2 bytes

0x0B 0x04 0x04 0x41D3 0x3333 0xE0A4

V.1.1.3 19 / 25

9 READ PARAMETERS : READ HOLDING REGISTERS

All parameters accessible from RCC can also be accessed with the Modbus protocol. The

corresponding Modbus function code to read Parameters is Modbus Read Holding Registers.

The “Quantity of Registers” need to be set to 2, otherwise the Xcom-485i will send back an

exception. It is possible to read the actual value of the parameter from Flash, but also the

minimum and the maximum value.

To distinguish between these, we use a different register address offset as explained below:

• Read value from Flash : offset = 0

• Read minimum possible value : offset = 2000

• Read maximum possible value : offset = 4000

9.1 READ PARAMETER VALUE FROM FLASH EXAMPLE

Read the value of the parameter {1107} (Maximum current on AC source) on Xtender 1.

Modbus Request PDU :

Function Code 1 Byte 3

Register Starting Addres 2 Bytes 14

Quantity of Registers 2 Bytes 2 (always 2, otherwise exception is returned)

Modbus Request on serial line :

The flash value of parameter 1107 is stored in register 14 and 15 and in order to read this user

info on Xtender 1, the request must be addressed to slave n°11 (0x0B) , assuming that Address

Offset is set to 0.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Start register address

2 bytes

Quantity of registers

2 bytes

0x0B 0x03 0x000E 0x0002 0xA562

Modbus Response PDU :

Function Code 1 Byte 3

Byte Count 1 Bytes 4

Input Register 0 2 Bytes 0x4170

Input Register 1 2 Bytes 0x0000

The value of parameter {1107} is 0x41700000 => 15.0 A

V.1.1.3 20 / 25

Modbus Response on serial line :

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Byte count

1 byte

Register 0

2 bytes

Register 1

2 bytes

0x0B 0x03 0x04 0x41F0 0x0000 0x443C

9.2 READ THE MINIMUM POSSIBLE VALUE FROM FLASH EXAMPLE

Read the minimum possible value of parameter {1107} (Maximum current on AC source) on

Xtender.

Modbus Request PDU :

Function Code 1 Byte 3

Register Starting Addres 2 Bytes 2014 = 14 + 2000

Quantity of Registers 2 Bytes 2 (always 2, otherwise exception is returned)

Modbus Request on serial line :

The minimal allowed value of parameter 1107 is stored in register 2014 and 2015 and in order

to read this user info on Xtender 1, the request must be addressed to slave n°11 (0x0B) ,

assuming that Address Offset is set to 0.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Start register address

2 bytes

Quantity of registers

2 bytes

0x0B 0x03 0x07DE 0x0002 0xA5EF

Modbus Response PDU :

Function Code 1 Byte 3

Byte Count 1 Bytes 4

Input Register 0 2 Bytes 0x4000

Input Register 1 2 Bytes 0x0000

The minimum possible value of parameter {1107} is 0x40000000 => 2.0 A

Modbus Response on serial line :

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Byte count

1 byte

Register 0

2 bytes

Register 1

2 bytes

0x0B 0x03 0x04 0x4000 0x0000 0x45F3

V.1.1.3 21 / 25

9.3 READ THE MAXIMUM POSSIBLE VALUE FROM FLASH EXAMPLE

Read the maximum possible value of parameter {1107} (Maximum current on AC source) on

Xtender.

Modbus Request PDU :

Function Code 1 Byte 3

Register Starting Addres 2 Bytes 4014 = 14 + 4000

Quantity of Registers 2 Bytes 2 (always 2, otherwise exception is returned)

Modbus Request on serial line :

The maximal allowed value of parameter 1107 is stored in register 4014 and 4015 and in order

to read this user info on Xtender 1, the request must be addressed to slave n°11 (0x0B) ,

assuming that Address Offset is set to 0.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Start register address

2 bytes

Quantity of registers

2 bytes

0x0B 0x03 0x0FAE 0x0002 0xA654

Modbus Response PDU :

Function Code 1 Byte 3

Byte Count 1 Bytes 4

Input Register 0 2 Bytes 0x4248

Input Register 1 2 Bytes 0x0000

The maximum possible value of parameter {1107} is 0x42480000 => 50.0 A

Modbus Response on serial line :

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Byte count

1 byte

Register 0

2 bytes

Register 1

2 bytes

0x0B 0x03 0x04 0x4248 0x0000 0xC45D

V.1.1.3 22 / 25

10 WRITE PARAMETERS : WRITE MULTIPLE REGISTERS

All parameters accessible from RCC can also be accessed with the Modbus protocol. The

corresponding Modbus function code to write parameters is Modbus Write Multiple Registers.

The “Quantity of Registers” need to be set to 2, otherwise the Xcom-485i will send back an

exception. In the Xtender system, it is possible to write a value in Flash (and RAM) or in RAM

only. To distinguish between both, we use a different register address offset as explained below:

• Write in Flash (and Ram) : offset = 0

• Write in RAM only : offset = 6000

10.1 WRITE IN FLASH EXAMPLE

Write in Flash (and RAM) the Maximum current of AC source {1107} on Xtender 1.

Modbus Request PDU :

Function Code 1 Byte 16

Register Starting Addres 2 Bytes 14

Quantity of Registers 2 Bytes 2 (always 2, otherwise exception is returned)

Byte Count 1 Byte 4

Register value 0 2 Bytes 0x4180

Register value 1 2 Bytes 0x0000

Modbus Request on serial line :

The value of parameter 1107, that is stored into flash memory, is written in register 14 and 15

and in order to write this parameter value on Xtender 1, the request must be addressed to slave

n°11 (0x0B) , assuming that Address Offset is set to 0.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Start reg addr

2 bytes

Qty of reg

2 bytes

Byte Count

1 byte

Reg 0

2 bytes

Reg 1

2 bytes

0x0B 0x10 0x000E 0x0002 0x04 0x4180 0x0000 0x462F

Modbus Response PDU :

Function Code 1 Byte 16

Register Starting Addres 2 Bytes 14

Quantity of Registers 2 Bytes 2

A write operation responds with the quantity of written registers, that is always 2 in this case.

V.1.1.3 23 / 25

Modbus Response on serial line :

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Start register address

2 bytes

Quantity of registers

2 bytes

0x0B 0x10 0x000E 0x0002 0x20A1

10.2 WRITE IN RAM ONLY EXAMPLE

Write in RAM only the Maximum current of AC source {1107} on Xtender 1.

Modbus Request PDU :

Function Code 1 Byte 16

Register Starting Addres 2 Bytes 6014 = 14 + 6000

Quantity of Registers 2 Bytes 2 (always 2, otherwise exception is returned)

Byte Count 1 Byte 4

Register value 0 2 Bytes 0x4180

Register value 1 2 Bytes 0x0000

Modbus Request on serial line :

The value of parameter 1107, that is stored into RAM memory, is written in register 6014 and

6015 and in order to write this parameter value on Xtender 1, the request must be addressed

to slave n°11 (0x0B) , assuming that Address Offset is set to 0.

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

Start reg addr

2 bytes

Qty of reg

2 bytes

Byte Count

1 byte

Reg 0

2 bytes

Reg 1

2 bytes

2 bytes

0x0B 0x10 0x177E 0x0002 0x04 0x4180 0x0000 0xAAFB

Modbus Response PDU :

Function Code 1 Byte 16

Register Starting Addres 2 Bytes 6014 = 14 + 6000

Quantity of Registers 2 Bytes 2

A write operation responds with the quantity of written registers, that is always 2 in this case.

Modbus Response on serial line :

 MODBUS PDU

Slave

Address

1 byte

Function

Code

1 byte

Data CRC

2 bytes

Start register address

2 bytes

Quantity of registers

2 bytes

0x0B 0x10 0x177E 0x0002 0x24CE

V.1.1.3 24 / 25

10.3 CHANGE VALUE OF PARAMETERS ON THE XTENDER INVERTER

Changing parameters when the inverters are in operation should be done carefully. The

modification of parameters can restart the corresponding algorithm inside the inverter. For

example, the change of a delay can restarts the timer attached to it.

10.4 CYCLIC WRITE OF PARAMETERS

When you are using the RCC remote control, the Xtender inverter/charger, VarioTrack and

VarioString MPPT solar chargers store their parameter values in a non-volatile flash memory.

Because of the endurance of this memory, the number of writes on a single parameter is only

guaranteed for 1000 write operations.

To allow the cyclic write of parameters without count limit, we suggest you to write the

parameters in RAM only (see chapter 10.2).

10.5 DATA ENCODING

In appendix, there are tables presenting the user information and the parameters of each

device. The format for each information/parameter is specified. All data are encoded

according to the standard format IEEE 754-2008: single precision floating point. There is plenty

of documentation regarding this format on the Internet. However, the format is explained for

your convenience below:

sign exponent mantissa

1 bit 8 bits 23 bits

IEEE 754-2008 single precition 32 bits floating point format

As an example, the decimal value 0.0 is coded 0x00000000 and the decimal value 1.0 is coded

0x3F800000.

Below we have briefly explained all Studer specific formats.

V.1.1.3 25 / 25

10.5.1 “ENUM” format encoded as a float

An "ENUM" is an enumeration and can basically take one value in between a set of possible

values. Each value has its own signification. For parameter, ENUM values are always power of

two values (e.g. 0, 1, 2, 4, 8, etc.). For user info, ENUM values are always incremental values

(e.g. 0, 1, 2, 3, 4, 5, 6, etc.). Remember that these values are encoded as a float, so:

0 will be encoded as 0.0 = 0x00000000,

1 will be encoded as 1.0 = 0x3F800000,

2 will be encoded as 2.0 = 0x40000000,

3 will be encoded as 3.0 = 0x40400000,

etc…

10.5.2 “BOOL” format encoded as a float

The "BOOL" format represents "TRUE" and "FALSE", encoded respectively as "+1.0" and "0.0". So:

"TRUE" will be encoded as 1.0 = 0x3F800000,

"FALSE" will be encoded as 0.0 = 0x00000000

10.5.3 “SIGNAL” format encoded as a float

The Signal format (e.g. parameter {1468}) is coded as a float. To send an active signal, you

must write the value “1.0” (encoded 0x3F800000) as the parameter value.

10.5.4 “HOUR” format encoded as a float

The hour format encoding is in minutes beginning at 00:00 and terminating at 23:59. There is no

field available for seconds. So:

13:41 = 13*60 + 41 = 821 minutes will be encoded as 821.0 = 0x444D4000

10.5.5 “DAYS of WEEK” format encoded as a float

The days of the week (e.g. parameter {1205}) is coded as a bit field in a float. To select a day,

set its corresponding bit to 1.

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Sunday Saturday Friday Thursday Wednesday Tuesday Monday

So:

Monday will be encoded as 2.00 = 1.0 = 0x3f800000

Sunday will be encoded as 2.06 = 64.0 = 0x42800000

Thursday + Saturday will be encoded as 2.03 + 2.05 = 40.0 = 0x42200000

All days will be encoded as 2.06 + 2.05 + 2.04 + 2.03 + 2.02 + 2.01 + 2.00 = 127.0 = 0x42fe0000

