

Quickstart

Studer Python library for

Xcom-485i

Date : 25.06.2020

Version : V1.0.0

V.1.0.0 2 / 7

CONTENTS

1 Introduction .. 2

2 Step-by-step Start .. 3
2.1 Install python ... 3

2.2 Studer Python Package ... 3

2.3 Hardware setup .. 4

2.4 Software setup .. 4

2.5 Install an IDE ... 5

2.6 Try an example with PyCharm .. 5

1 INTRODUCTION

Wherever Python can run you can develop, whether it’s a personal computer or a single board

nano computer. Python is no longer to be presented and allows the realization of software

applications in a reduced time. The Studer’s libraries let you access each parameter and

information containing into Studer’s devices for monitoring and/or control. Examples for each

case are provided, which can be used as a basic canvas or extended into a solution tailored

to your requirements, let’s your ideas become reality with Studer.

Ready to use, those libraries make you exploit the full potential of each Studer devices for your

own developpment. Just Plug’n’Dev:

• Easy access to Studer gateways and gain full control over the Studer devices

• Forget about low-level configurations and time-consuming debugging

• Simply focus on your solution and adapt it to your needs

• Fast and easy development, thanks to Python language

The various use-case, this enables are:

• Create your own remote-control:

o Build your own GUI

• Monitor data as you want

o Log them into your preferred file format

o Display them on your own dashboard

• Control the system as you need

o Adapt it easily with your environment

o Regulate it with your own algorithm

• Set up laboratories to educate students on energy production, conversion and storage

• Adapt pre-existing shared solutions

o Get inspired from the community

o Be efficient

• Be part of the community

o share your DIY application

From a simple Python script reading the battery voltage to a more complex fully build

application every case is possible; from plug’n’play to plug’n’dev every hobbyist, enthusiast,

developer, integrator, teacher, student, etc… will find an answer with Open Studer.

V.1.0.0 3 / 7

2 STEP-BY-STEP START

This quickstart will guide you through the process of setting a communication between your

Xcom-485i device and a controller, such as a personal computer, using the xcom485i Python

library with one IDE (integrated developpement environnement).

The usefull links are:

• General documentation : https://www.studer-innotec.com/en/downloads/

o Then in Software and updates in Communication protocols Xcom-485i

• Source code and examples : https://github.com/studer-innotec/xcom485i

• Library documentation : https://xcom485i.readthedocs.io/en/latest/index.html

Follow the steps presented below to run your first example with the xcom485i Python library with

PyCharm IDE. Other IDE are also working very well.

2.1 INSTALL PYTHON

Go to https://www.python.org/downloads/ to download and install Python if you didn’t

already have it, Studer Innotec software development team uses currently version 3.6.8

(https://www.python.org/downloads/release/python-368/).

Please Note: During the installation select the checkbox mentioned below, for the sake of

conviencience. This allows you to lauch Python just by typing python in a terminal and not the

full path to the executable.

2.2 STUDER PYTHON PACKAGE

Open a terminal (Press +R and enter “cmd” on Windows) to type the following commands:

- First check your freshly Python install by running:

> python –-version

Python 3.x.x

- Install Studer Xcom-485i Python package by running:

> python -m pip install xcom485i

Collecting xcom485i

- Check package installation by running:

> python -m pip freeze

pyserial==3.4
uModbus=1.0.3
xcom485i==0.9.1

 Note that version numbers are subject to change

https://www.studer-innotec.com/en/downloads/
https://github.com/studer-innotec/xcom485i
https://xcom485i.readthedocs.io/en/latest/index.html
https://www.python.org/downloads/
https://www.python.org/downloads/release/python-368/

V.1.0.0 4 / 7

2.3 HARDWARE SETUP

In order to communicate with the Xcom-485i gateway with your personal computer, or another

controller, you should use a serial-to-USB dedicated cable and add a RJ-45 connector to the

bare side. Studer Innotec software development team used those converters:

• https://www.ftdichip.com/Products/Cables/USBRS485.html

• https://www.delock.com/produkte/1011_Serial/64055/merkmale.html

Inside the Xcom-485i, a jumper array lets you select the pin assignment of the RJ-45 connector,

as depicted above. This configuration is an example and you could do it as you want.

Be sure to set your desired Address Offset and Baud rate with the dip switches located inside

the Xcom-485i gateway, configurations are shown in the tables below.

2.4 SOFTWARE SETUP

Once you have plugged the cable to the External RS-485 Bus interface of the Xcom-485i

gateway, plug the USB side to your controller. You will have now to find the serial port interface.

If you are using a computer running Windows, open the Device Manager (Press +R and enter

“devmgmt.msc”) and expand the Ports (COM & LPT) to find the USB Serial Port (COMx) where

x is the serial port number.

Position
Baud rate

7 8

OFF

OFF 9’600 bps

ON 19’200 bps

ON

OFF 38’400 bps

ON 115’200 bps

Position Address

Offset

Address

range 1 2

OFF

OFF 0
(0)

1 to 63

ON 32
(0)

33 to 95

ON

OFF 64
(0)

65 to 127

ON 128
(0)

129 to 192

https://www.ftdichip.com/Products/Cables/USBRS485.html
https://www.delock.com/produkte/1011_Serial/64055/merkmale.html

V.1.0.0 5 / 7

2.5 INSTALL AN IDE

Go to https://www.jetbrains.com/pycharm/ to download and install PyCharm Community if

you didn’t have any IDE. You can use any IDE you like or just your command line interface if

you are comfortable with it, but this document shows you how to run an example with

PyCharm. No specifc configurations are required to install it.

2.6 TRY AN EXAMPLE WITH PYCHARM

Once installed, you can run PyCharm and create a new project

Give it a name and select Existing Interpreter

https://www.jetbrains.com/pycharm/

V.1.0.0 6 / 7

Choose System Interpreter and add the path where to find python.exe

Click OK then Create

Select your folder’s project, with the right click of the mouse select “New” then “Python file”

and name it as you want.

Go to https://github.com/studer-innotec/xcom485i/blob/master/examples/ex_read_info.py

and copy the source code, paste it into your Python file inside PyCharm.

Please Note: You need to adapt the constants definitition at the top of the file with your specific

serial port name, baudrate and address offset.

https://github.com/studer-innotec/xcom485i/blob/master/examples/ex_read_info.py

V.1.0.0 7 / 7

Run your first example by clicking the green run button, this example read user info n°3001 on

the first Xtender of the installation.

You could go a little further and use the example presented below, don’t forget to check the

list of registers into the Technical specification Studer Modbus RTU Appendix document.

import serial

from xcom485i.client import Xcom485i

SERIAL_PORT_NAME = 'COM4' # your serial port interface name

SERIAL_PORT_BAUDRATE = 9600 # baudrate used by your serial interface

DIP_SWITCHES_ADDRESS_OFFSET = 0 # your modbus address offset as set inside the Xcom485i device

BATTERY_REGISTER = 0 # Battery Voltage

TEMPERATURE_REGISTER = 2 # Battery Temperature BTS

STATE_OF_CHARGE_REGISTER = 14 # SOC

STATE_OF_XT_REGISTER = 98 # XT is ON or OFF

if __name__ == "__main__":

 try:

 serial_port = serial.Serial(SERIAL_PORT_NAME, SERIAL_PORT_BAUDRATE, parity=serial.PARITY_EVEN, timeout=1)

 except serial.serialutil.SerialException as e:

 print("Check your serial configuration : ", e)

 else:

 xcom485i = Xcom485i(serial_port, DIP_SWITCHES_ADDRESS_OFFSET, debug=False)

 batt_voltage = xcom485i.read_info(xcom485i.addresses.xt_1_device_id, BATTERY_REGISTER)

 print('\nBattery Voltage:', batt_voltage, 'Volts')

 batt_temp = xcom485i.read_info(xcom485i.addresses.xt_1_device_id, TEMPERATURE_REGISTER)

 if batt_temp == 32767.0:

 print('\nNo battery temperature info in the XT, there is no BSP')

 else:

 print('\nBTS Température:', batt_temp, '°C')

 soc = xcom485i.read_info(xcom485i.addresses.xt_1_device_id, STATE_OF_CHARGE_REGISTER)

 if soc == 32767.0:

 print('\nNo SOC info in the XT, there is no BSP')

 else:

 print('\nSOC:', soc, '%')

 xt_state = xcom485i.read_info(xcom485i.addresses.xt_1_device_id, STATE_OF_XT_REGISTER)

 if xt_state == 0.0:

 print('\nThe Xtender is OFF')

 else:

 print('\nThe Xtender is ON')

 serial_port.close()

 That’s it ! You can start build your own solution right now. If you are new to Python go to :

https://docs.python.org/3.6/tutorial/ and don’t forget that Python is based upon indentation.

https://docs.python.org/3.6/tutorial/

